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PREFACE

This work deals with the numerical modeling of the normal modes of the global

oceans. The results of such modeling could be expected to serve as a guide in

the analysis of observations and measurements intended to detect these modes.

The numerical computation of normal modes of the global oceans is a field in

which several investigations have obtained results during the past 15 years. The

results seem to be model-dependent to an unsatisfactory extent. This work

addresses some modeling areas, such as higher resolution of the bathymetry,

inclusion of self-attraction and loading, the role of the Arctic Ocean, and system-

atic testing by means of diagnostic models. The results show that the present

state of the art is such that a final solution to the normal mode problem still lies in

the future. The numerical experiments show where some of the difficulties are

and give some insight as to how to proceed in the future.



INTRODUCTION

This paper deals with the numerical modeling of the normal modes of the global

oceans. In addition to its intrinsic interest as a problem in applied mathematical

physics, the results of such modeling could be expected to serve as a guide in

the analysis of observations and measurements intended to detect these modes.

The observation of the modes is important for a number of reasons, such as the

understanding of the oceans's response to forcing by gravitational forces (tides),

wind stresses (circulation), and perhaps even to changes in the rotational poten-

tial of the Earth (pole tide). The numerical computation of normal modes of the

global oceans is a field in which several investigations have obtained results

during the past 15 years. These will be cited in the text below. As indicated by

Platzman (1991), the results seem to be model-dependent to an unsatisfactory

extent.

Platzman et al. (1981) list a number of areas for further investigation. This work

will address some of those areas, such as higher resolution of the bathymetry,

inclusion of self-attraction and loading, the role of the Arctic Ocean, and system-

atic testing by means of diagnostic models. The effects of bathymetry definition

are studied by comparing results obtained with grids of 4- and 2-degree resolu-

tion; these grids are defined in spherical coordinates. The role of the Arctic

Ocean is determined by comparing results obtained with two 4-degree grids, one

of which does not include the Arctic. Self-attraction and loading are modeled by

the approximate method of Accad and Pekeris (1978). The Proudman method

allows for variation in the number of eigenfunctions that are included in the

Laplace tidal equation. These effects are studied by producing four solutions with

the 4-degree grid, corresponding to the inclusion of 100,500,800, and 1500

eigenfunctions for each of the Stokes potentials.

The objective of this investigation is not to provide the final solution to the normal

mode problem, rather it aims to show that the present state of the art is that such

a solution still lies in the future. It is hoped that the various numerical experiments

will exhibit where some of the difficulties lie, as well as provide some insight as to

how to proceed in the future. If nothing else, the results should show that the

normal mode periods obtained from present numerical models are still tentative

and do not enjoy the same degree of accuracy as other physical constants, such

as the gravitational constant or the velocity of light.
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MATHEMATICAL PRELIMINARIES

The theoretical foundation of this method was developed by Proudman (1917);

this investigation used a reformulation developed by Rao (1966). The theory

provides the formalism for calculation of the gravitational and rotational normal

modes of irregularly shaped basins with realistic bathymetry. The detailed math-

ematical formulation of the method can be found in Rao (1966). The present

application to a world ocean model which includes islands requires the modifica-

tion and extension of the methodology for it to be consistent with the topological

configuration, specifically the solution of the stream function eigenvalue problem

requires the reformulation of the boundary conditions. The operator for the

stream function eigenvalue problem is derived from the vorticity of the transport field,

V h-Ivv= -#V

= o on main boundary

h: basin depth

It: eigenvalue

_: eigenfunction

(1)

The impermeability of the boundary requires it to provide a contour of constant

value for the stream function. The value is arbitrarily selected to be equal to zero

in the simply connected problem. In a multiply connected domain, the boundary

of the "mainland" can still represent a constant contour with zero value for the

stream function, but the island boundaries represent contours of constant stream

function value which differ from zero and these values have to be determined by

means of line integrals around each of the islands. This problem was addressed

originally by Kamenkovich (1961) in the context of wind-driven ocean circulation

problems and more recently, by Platzman (1979) with application to the normal

mode problem. Platzman (private communication) provided the boundary conditions to be

used specifically in the solution of the stream function eigenvalue problem

.{h- 1.___/_ = o
ds

an

ci

_= bi

ci: boundary of island 'T'

bi: constant to be determined

These boundary conditions can be obtained from considerations of single-value

for the surface displacement, but they also follow naturally from the self-

adjointness requirement for the operator. The eigenvalue problem for the velocity

potential requires no modification in the multiply connected case; the divergence

of the transport field and boundary impermeability yield



Vh V¢=-X¢ (2)
h _ = o, on boundaries

;gn

_: eigenvalue

¢: eigenfunction

The substitution of the Proudman functions into the unforced Laplace tidal equa-

tions yields the third eigenvalue problem, the solution of which constitutes the

main goal of this investigation"

i M__).8.=0
_" eigenvalues of matrix i M

I-I" identity matrix

S_." matrix with eigenvector columns of expansion

M" matrix formed from Laplace tidal equations

i =_- 1

coefficients

(3)

COMPUTATIONAL PRELIMINARIES

I.) The Grids

The numerical images of the operators appearing in equations (1) and (2) were

obtained using finite differences. The finite difference equations were obtained by

means of three different grids, all of them expressed in spherical coordinates.

The angular distance between adjacent velocity potential points or between

adjacent stream-function points is 4 degrees for two of the gridsmone with and

one without the Arctic. The third grid has a 2-degree definition and includes the

Arctic. Figure 1 shows the grids and Table 1 gives pertinent information. Grids A4

and A2 do not include the Arctic in its totality; a small cap covers the North Pole

and connects with Greenland. To that extent, any Arctic modes produced by the

models will be unrealistic, hopefully, the effect produced by the inclusion of the

Arctic approximation on the global model will still be realistic. The presence of a

small cap at the North Pole simplifies the computer coding. The bathymetry data

used in each of the grids were obtained from the 5' database of the World Data
Center in Boulder, Colorado, with 2- and 1-degree averages for the 4- and 2-

degree grids, respectively.

II.) The Lanczos Method

The Lanczos technique was used to formulate the matrix image of the operator

appearing in the stream-function problem. The iterative nature of this method

makes it convenient to deal with the line integral appearing in the boundary

conditions.



The Lanczos method was used also in the formulation of the velocity potential

problem in the 2-degree grid. In all cases, renormalization was implemented in

the creation of the Lanczos basis--for the 2x2 model, this means 9608 iterations

for the velocity potential, and 8869 iterations for the stream function, with every

Lanczos auxiliary vector being normalized with respect to the previous one.

Various eigensystem analysis subroutines from the IMSL/MATH LIBRARY were

used to solve the matrix-eigenvalue problems, and the subroutines BISECT and

TINVIT from EISPACK were used with the Lanczos method. The hardware

consisted of CRAY computers available at the Goddard Space Flight Center and

at Cray Research, Inc., in Minneapolis. For more details, see Morrow and

Sanchez (1992).

III. The Normal Modes Matrix

It can be shown that if (n) velocity potential eigenfunctions and (n) stream-func-

tion eigenfunctions are substituted into the Laplace tidal equations (L.T.E.) the

matrix M will have size (3n x 3n). The solution eigenvalues appear as a column

of length 3n, the midpoint separates two mirror images with opposite signs. The

two signs for every eigenvalue correspond to opposite senses of phase propaga-

tion for every mode. Every set of (3n/2) distinct eigenvalues is composed of (n/2)

values that correspond to rotational modes modified by gravity and (n) values

associated with gravitational modes modified by rotation. As is well known, the

gravitational modes have a limit point at infinite frequency, the rotational modes

have a limit point at zero frequency, and the wavelength approaches zero at

each. The matrix of solution eigenvectors S is partitioned in a similar manner, two

submatrices of size (3n/2) x (3n) appear, mirror images of each other. In the

absence of friction, the matrix i M is hermitean, its eigenvalues are real and its

eigenvectors are orthogonal.

The structure of the matrix M allows the identification of the rotational modes

modified by gravity and the gravitational modes modified by rotation, as they

appear in the solution matrix S. The energy of the rotational modes is mostly

kinetic, while the gravitational modes are characterized by approximate

equipartition between kinetic and potential. The exception to this rule occurs at

the boundary between the two types of modes. In this area, some of the modes

in the gravitational regime have large values of kinetic energy and show space

structures characteristic of vorticity modes. However, it is still possible to associ-

ate zero-rotation periods with these modes; therefore, they are included in the

gravity mode spectrum in this report. The zero-rotation period is the normal

mode period obtained when the Coriolis parameter vanishes.



NUMERICAL RESULTS

I.) Results Using the 4--Degree-Resolution Grids

a.) The number of Proudman functions included in L.T.E.

As seen in Table 1, computations using the 4-degree grids involve approximately

one-fourth the number of degrees of freedom of the 2-degree case. Many areas

of investigation can be addressed with the 4-degree grids at great savings of

computational effort. One such area involves the behavior of the normal mode

solution as a function of the number of Proudman functions inserted into the

L.T.E., for that purpose, four solutions were generated using grid A4. The num-

ber of functions of each type used in the L.T.E. being 100,500,800, and 1500,

respectively. The results are displayed in Table 2, and in Figures 2 and 3. Table

2 shows the periods of selected gravity modes for the four cases. Figure 2 shows

the first 50 periods (gravity modes) for the four solutions. The inclusion of more

eigenvectors in the solution yields more modes at the faster end of the spectrum,

as is to be expected from wavelength considerations. Figure 3 shows the periods

for the fastest 50 rotational modes for each of the four cases, with the exception

of the 100-function case, which includes only the fastest 25 modes. The four

solutions are certainly quite apart, the inclusion of more eigenvectors maps into a

decrease in the periods of the rotational normal modes.

b.) The Arctic Ocean

In order to ascertain the effect of the Arctic Ocean, a solution with grid NA4 was

computed with 500 eigenvectors of each type inserted into the L.T.E. Figure 4

shows the periods of the 50 slowest gravity modes for this solution and for its

counterpart (500 functions), which includes the Arctic. Figure 4 shows longer

periods for the model that includes the Arctic; this does not mean that each mode

had its period lengthened, but that the entire spectrum has shifted due to the

presence of the new modes, as shown in Table 3.

To determine the effect of the Arctic Ocean on a particular mode, Table 4 should

be considered, which shows the normal mode periods for three of the models, as

well as the potential energy percentage of total energy and the zero-rotation

period (when applicable), for the range 50-90 hours. The modes with no zero-

rotation period are rotational modes modified by gravity. The first gravity modes

modified by rotation have periods of 62.8 hours for the 4° x 4 ° model with no

Arctic, 76.4 hours for the 4° x 4 ° model with the Arctic, and 71.9 hours for the 2° x

2° model. These modes have relatively low levels of potential energy (their space

structures are shown in Figure 7) and they are essentially vorticity modes, as

pointed out by Platzman et al. (1981).
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The first gravity modes for the three models have periods of 50.4, 54.8, and 66.9
hours. The space structures for the first two are shown in Figure 8. The results
for the two 4° x 4ogrids indicate that the inclusion of the Arctic Ocean produces
an increase in the normal mode periods. This increase is 4.4 hours for the first
legitimate gravity mode and 13.6 hours for the vorticity mode.

c.) Loading and Self-attraction

The effects of loading and self-attraction have been simulated by an approxi-
mate approach, originally due to Accad and Pekeris (1978), and also used by
Schwiderski (1980) in the context of computation of the forced solutions to the
L.T.E.

/%

(=o.lo 

4: surface displacement

_: additive effect due to self-attraction and loading

A more exact representation requires theoretical developments in terms of the

Proudman function basis, which are not available at the present time; the existing

theory being in terms of spherical harmonics. Figure 5 shows the results for the

loading and self-attraction solution, and for the standard case without it. Loading

and self-attraction lengthen the periods slightly, as was predicted by Marchuk

and Kagan (1989), from Rayleigh's ratio analysis.

d.) Space Structure of the Modes

Every mode has a space-dependent amplitude and phase distribution. A com-

prehensive atlas of such distribution for each mode is beyond the scope of this

presentation. Instead, specific geographic areas will be analyzed in terms of the

50 slowest gravity modes and plots of amplitude and phase for a few specific

modes will be given. The mean-square elevation of a mode is given by,

_'-2 =f(2 da/A

(2: mean-square elevation

A: oceans'area

The normalized regional mean-square elevation is given by,

£i2/_ 2

(i2: regional mean-square elevation.
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A mode of uniform amplitude will have a value of 1 for its normalized regional
mean-square elevation in all regions, non-uniform amplitude distributions will
have a value greater than 1 for energetic regions, and less than 1 for "quiet"
areas. A value of 1 indicates average activity, not necessarily uniform amplitude.

Figure 6 shows the distribution of normalized regional mean-square elevation for
the 50 slowest gravity modes as computed using grid NA4, which excludes the
Arctic Ocean. The bottom panel shows the results obtained for a region defined
by a cap on the South Pole, which extends 10 degrees north of the Antarctic
Circle, to colatitude 146.5 degrees. This region has been chosen in order to
search for modes which might be associated with Kelvin waves around Antarc-
tica. Such a mode was obtained by Platzman (1981) in his calculations.

The most energetic mode in the Antarctic region is mode number 7, with a period
of 29.59 hours. The amplitude and phase distributions for this mode are dis-
played in Figure 9, which shows the characteristics of an Antarctic Kelvin wave.
Other peaks occur at mode number 23, with a period of 14.84 hours, and at
mode number 48, with a period of 9.38 hours.

Figure 6 also presents the results of computations using grid A4, which includes
the Arctic Ocean. The middle panel shows the results for an Antarctic cap as
previously defined; the top displays the results for an Arctic cap defined by the
Arctic Circle. Most of the modes are very energetic in the Arctic Ocean, the
highest peak corresponding to mode number 47, with a period of 12.09 hours.

The Antarctic region has its peaks at mode 38, with a period of 14.63 hours, and
mode 14, with a period of 29.44 hours. Figure 9 shows the amplitude and phase
structure for mode 14--the Antarctic Kelvin wave is evident.

II.) RESULTS USING THE 2-DEGREE-RESOLUTION GRID

The grid A2 was used to compute Proudman functions, and 500 of each type

were used in the normal mode solution.

The spectrum of gravity modes covers a period range from 71.9 hours to 3.54

hours. Figure 10 shows the periods for this solution and the periods obtained with

grid A4. The curve for the 2-degree grid shows longer periods, but this is pro-

duced by a shift due to the greater number of modes in the 10- to 80-hour range

(see Table 3). The period of the gravest mode has decreased however, from

76.4 to 71.9 hours. The corresponding curves for the periods of the vorticity

modes are shown in Figure 11;the 2-degree solution now shows faster periods

than its coarser counterpart, but again, identical mode numbers do not necessar-

ily refer to the same physical mode structure. The periods of the rotational modes
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range from 83.87 hours to 15.82 years. The effects of self-attraction and loading
were modeled by the same approximate technique used in the 4-degree case;
the results are given in Table 5. On the average, self-attraction and loading
lengthens the periods by about 5 to 6 percent. Normalized computations were
performed using polar caps as defined in the 4-degree grids. The results are
displayed in Figure 12. For the 300 slowest gravity modes, note that mean eleva-
tion is now plotted as a function of period. Many modes are energetic in the
Arctic Ocean (top panel of the figure). There are 106 modes with normalized
elevation values between 1 and 10, 38 between 10 and 20, 57 between 20 and
30, and 21 greater than 30.

The Antarctic region has 26 modes with elevation values between 1 and 2, and 3
modes with values between 2 and 3. There are peaks for modes with periods of
30.57, 28.92, 28.40, and 27.99 hours; these correspond to fundamental Kelvin
waves around Antarctica. Peaks at 15.74 and 14.71 hours can be identified with
the second harmonics. Higher wave numbers are present at a number of modes
with periods in the 5- to 11-hour range. Amplitude and phase for some of the
modes are given in Figures 13-17. Note the amphidrome in the North Sea, which
clearly appears in some of the modes, but that the 4-degree grid resolution was
unable to reproduce.

SUMMARY

Table 5 gives a summary of the first 20 gravity modes obtained in the various

experiments.

It was found that the number of Proudman functions included in the Laplace tidal

equations (after an initial minimum) does not produce great changes in the peri-

ods and structures of the gravity modes (with the exception of the slowest two

modes, which are essentially vorticity moaes).

The addition of more eigenfunctions fills the short-wavelength part of the spec-

trum, and faster modes are obtained, which were not present before. The results

for the vorticity modes indicate that the addition of more functions produces large

changes in the periods throughout the spectrum--the changes being larger as

the periods get larger and the wavelengths become smaller. As more functions

are included, the entire spectrum become faster. If proper numerical controls are

maintained, the solution with more functions should be more accurate, however,

the size of the matrix could be a constraining factor. The inclusion of the Arctic

Ocean can produce changes in the periods and structures of the modes, espe-

cially in the regions closer to the Arctic, as expected. New modes appear in the

solution, and many are quite energetic in the Arctic. The period of the slowest

gravity mode is lengthened by almost 4.4 hours by inclusion of the Arctic Ocean.
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The effects of loading and self-attraction were simulated by the approximate
method of Accad and Pekeris; the periods of the gravity modes were lengthened
by less than 10percent. Computations using a finer grid with 2-degree resolution
result in a greater number of modes appearing in the long-wavelength part of the
gravity mode spectrum.

A comparison of the solutions in the rotational mode band shows similarity in the
shape of the periodicity curve, with the 2-degree solution having faster periods
than the 4-degree case.

Figure 18 shows the modal periods in the diurnal and semidiurnal spectral bands,
as obtained by different investigations; it is a reproduction of Table 4.3 by
Marchuk and Kagan (1989), but it has been extended to include the results of
this investigation. Various methods were used by the different investigations. The
grid resolution also varies: Protasov, and Gotlib and Kagan used 5-degree finite
difference grids; GaviSo Rodriguez, a 4-degree grid; Platzman, a finite-element
grid with an average area equal to a 4.54-degree equatorial square. The results
for Sanchez and Morrow (4-degree grid with the Arctic) correspond to the case
using 1500 eigenfunctions for each of the Helmholtz potentials.

It is not surprising that Figure 18 shows discrepancies in the spectrum obtained
by the various investigations; there are differences in the grid resolution and
method of solution, and also in the lateral boundaries of the domains--as shown
in Figure 19. The computational bathymetries are very likely to be different; this is
also true for the various models used in this work, as shown in Table 1.

The results indicate that future numerical models should use grids of finer resolu-
tion and should include the Arctic Ocean. If the Proudman method is used, the
solution should include as many Proudman functions as possible--especially if
accurate resolution of the vorticity modes is desired. For more accuracy in the

gravity mode calculation, self-attraction and loading should be included.

A few simplified models of friction were tried in this investigation, but the results
were not deemed sufficiently important to be reported; the topic deserves a more
careful and complete treatment. The numerical modeling of oceanic normal
modes continues to suffer from lack of constraints as a result of lack of direct
observations. Luther (1983) addressed this point in an excellent manner.

A more recent treatment by Platzman (1991)illustrates possible approaches for
future analysis of oceanic data.
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Table 1. Grids used in the calculations

Grid Angular No. of basin points Area Mean Depth Maximum Arctic

definition q_ _b 10 6 km 2 m N. latitude

NA4 4 ° x 4 ° 2094 1849 326.1 4114 67.2 ° No

A4 4 ° x 4 ° 2306 1991 335.5 4028 84.0 ° Yes

A2 2° × 2° 9608 8869 342.1 3964 86.25 ° Yes

Table 2. Gravity-mode periods (hours) of selected modes

Mode No. functions included in L.T.E.

Number 100 500 800 1500

1 79.0 76.4 75.5 64.6

100 7.25 7.54 7.54 7.54

500 2.76 2.77 2.77

800 2.15 2.15

1500 1.54

Table 3. Number of gravity modes in given period ranges"

Period 4°'x4 ° 4 °x4 ° 2 °x2 °

Range (h) No Arctic Arctic Arctic

60-80 1 2 3

40-60 2 4 7

20-40 10 17 25

10-20 31 42 70

0-10 456 435 395

* All three solutions use 500 eigenfunctions.
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Table 4. Modes (periods50-90h)

4°x 4° (NA) 4°x 4° (A) 2°x2 ° (A)
Period PE(%) P(f=0) Period PE(%) P(f=0) Period PE(%) P(f=0)

88.5 10.4
77.2 22.4
62.8 17.1
50.4 40.2

89.2
76.4

104.7 63.1
65.0 54.8

53.3

8.1
23.6 127.2
18.9 90.8
52.2 64.1
54.8 50.0

89.6 14.2
83.8 38.4
71.9 25.5 122.4
66.9 49.8 85.5
61.9 64.9 66.9
58.3 49.8 63.9
52.9 58.2 57.9
51.5 55.2 52.8

All cases:500eigenfunctionsof eachtype, no loading.
PE (%): Potential energypercentageof total energy.
P(f = 0): Period at zero rotation.
NA: No Arctic A: Arctic
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Table 5. Gravity-mode periods (hours)

Mode 4° × 4° (A, NL) 4 ° x 4 ° (500) 2 ° x 2 ° (500)

no. 100 800 1500 NA, NL A, NL A,L A, NL A,L

1 79.0 75.5 64.6 62.8 76.4 78.4 71.9 73.9

2 63.9 62.8 61.5 50.4 63.1 64.4 66.9 70.5

3 55.2 54.6 54.0 42.0 54.8 58.0 61.9 66.4

4 53.2 53.2 52.5 37.4 53.3 56.4 58.3 61.5

5 48.7 48.3 47.5 35.9 48.5 50.9 52.9 56.5

6 43.0 43.0 42.7 31.0 43.1 45.6 51.5 54.6

7 39.4 39.1 38.5 29.6 39.6 42.0 49.6 52.5

8 38.6 38.5 38.0 25.7 38.6 40.6 45.9 48.3

9 36.9 36.8 36.5 25.4 37.0 39.1 41.7 44.1

10 35.6 35.4 34.9 23.9 35.7 37.6 40.9 43.5

11 34.4 34.4 34.1 23.0 34.5 36.3 37.5 39.9

12 33.8 33.6 32.0 21.2 33.9 35.7 36.2 38.3

13 31.3 31.1 30.8 20.6 31.2 32.9 34.0 35.8

14 29.2 29.3 29.2 19.7 29.4 31.1 33.2 35.2

15 29.0 28.9 28.7 19.0 29.2 30.8 31.6 33.3

16 27.7 27.5 27.4 18.2 27.7 29.3 30.6 32.1

17 27.2 27.2 27.2 17.9 27.2 28.7 29.4 31.3

18 25.5 25.5 25.4 17.6 25.6 27.1 28.9 30.4

19 24.9 24.9 24.7 16.8 24.9 26.3 28.4 29.9

20 24.3 24.2 24.0 16.2 24.3 25.6 28.0 29.4

NA: No Arctic

NL: No Loading

A: Arctic

L: Loading

100, 500, 800, 1500: Number of eigenfunctions in solution

4 ° × 4 °, 2 ° x 2°: Grid definition

16



80 °

60"

40"

20"

O*

20"

40"

60"

80"

80"

60"

40"

20"

O"

20"

40 °

60"

80"

160" 120" 80" 40 ° O" 40" 80" 120" 160"

160" 120" 80" 40" O* 40" 80" 120" 160"

80"

60"

40"

20"

O"

20"

40"

60"

80"

160" 120" 80" 40" O" 40" 80" 120" 160"

Figure 1. Spherical coordinates grids used in the computations. From top to bottom: 4 degree
without the Arctic; 4 degree with the Arctic; and 2 degree with the Arctic.
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Figure 6. Normalized regional mean-square elevation for the slowest 50 gravity modes, 4-

degree solutions. Bottom panel: ocean region defined by a South Pole cap extending to 10

degrees north of the Antarctic Circle. Solution with grid NA4 (no Arctic). Middle panel: ocean

region as defined in bottom panel. Solution with grid A4 (Arctic included). Top panel: ocean

region defined by a North Pole cap delimited by the Arctic Circle. Solution with grid A4.
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Figure 7A. Amplitude Contours. Amplitude normalized to RMS elevation equal to 100. Solutions:
500 functions, no loading and self-attraction. Bottom panel: mode with period of 71.9 hours, 2-
degree solution. Middle panel: mode with period of 76.4 hours, solution with grid A4. Top panel:
mode with period of 62.8 hours, solution with grid NA4.
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Figure 7B. Phase Contours. Zero phase is assigned to the grid point closest to the Strait of
Gibraltar. Bottom, middle and top panels are as in Figure 7A.
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Figure 8A. Amplitude Contours. Bottom panel: mode with period of 50.4 hours, solution with grid

NA4. Top panel: mode with period of 54.8 hours, solution with grid A4.
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Figure 9A. Amplitude Contours. Bottom panel." mode with period of 29.59 hours, solution with grid

NA4. Top panel: mode with period of 29.44 hours, solution with grid A4.
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Figure 13. Amplitude and phase for gravity mode number 16, 2-degree solution. Period of 30.57

hours. Amplitude (top panel) normalized to RMS elevation equal to 100. Phase (bottom panel) in
degrees. Zero phase assigned to grid point closest to Gibraltar.
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Figure 15.
hours.

Amplitude and phase for gravity mode number 19, 2-degree solution. Period of 28.40

33



160" 120" 80" 40" O" 40" 80" 120" 160"

160" 120" 80" 40" 0° 40" 80" 120" 160"

Figure 16. Amplitude and phase for gravity mode number 20, 2-degree solution. Period of 27.99

hours.
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Figure 17.
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Amplitude and phase for gravity mode number 56, 2-degree solution. Period o! 14.71
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Figure 18. Periods of the gravity modes as obtained by various investigations. Toppanel: 11.5-

13.0 hours range. Bottom panel:19.0-30.0 hours range.
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